On the Use of Quasi-Newton-Based Training of a Feedforward Neural Network for Time Series Forecasting

نویسندگان

  • Pennagaram D. Devika
  • Luke E. K. Achenie
چکیده

This paper examines the e ectiveness of using a quasi-Newton based training of a feedforward neural network for forecasting. We have developed a novel quasi-Newton based training algorithm using a generalized logistic function. We have shown that a well designed feed forward structure can lead to a good forecast without the use of the more complicated feedback/feedforward structure of the recurrent network. keywords: Feed forward neural network, quasi-Newton, forecasting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease)

Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona in...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

Short term river flood forecasting with neural networks

This paper reports results obtained using artificial neural networks (ANN) models for shortterm river flow forecasting under heavy rain storms, in the upper Serpis river basin (460 km), with the outlet in Beniarrés reservoir (29 hm ). The system is monitored by 6 raingauges, providing 5-min rainfall intensities, while reservoir inflows are derived from depth measurements in the reservoir every ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1995